Meteorological Modeling Analyses of Data Captured During the CRPAQS Field Program

Final Presentation 04-2PM

Prepared by:
Neil Wheeler, Ken Craig, and Steve Reid
Sonoma Technology, Inc.
Petaluma, CA

Presented to:
CCOS Technical Committee
Sacramento, CA
October 1, 2008

Overview

- Introduction
- Analyses
- Summary and Conclusions
- Recommendations

General Questions

- To what extent can we drive and evaluate diagnostic/prognostic meteorological models using the meteorological data collected?
- Do the simulated meteorology fields represent reality?

Topics Investigated

- Ability of meteorological models to represent important phenomena
- Model evaluation techniques
- Transport pathways
- Adequacy and validity of measurement methods
- Sufficiency of data precision, accuracy, bias, consistency, and time-resolution

Modeling Periods

- CALMET (STI):
 - 12/24/2000 12/30/2000
 - 01/03/2001 01/09/2001
- MM5 (ARB):
 - 12/14/2000 01/08/2001(No FDDA Case)
- Combined:
 - 12/25/2000 12/30/2000
 - 01/03/2001 01/08/2001

Important Processes

- Stagnation
- Moisture/Fog/Stratus
- Vertical mixing including plume rise
- Recirculation
- Precursor transport (Carbon vs. Nitrate)

Data Analyses

- Statistics (METSTAT)
- Time series plots (T, Q, WS, WD, PBL, VI)
- Spatial plots
- Vertical wind profiles
- Extent of Fog/Stratus
- Soil temperature
- Transport Statistics

METSTAT

- Developed by ENVIRON for TCEQ
- Adjustments to T and WS based on similarity theory
- Issues
- Modifications by Nelson-Gammon (TAMU)
- Modifications by STI
- T_{2m} approximation by linear interpolation

Statistics

- 1. Hourly mean observations over all sites
- 2. Hourly mean predictions over all sites
- 3. Hourly bias (signed error) over all sites
- 4. Hourly systematic, unsystematic, and total root mean square error (RMSE) over all sites except for wind direction
- 5. Hourly Index of Agreement (IOA) over all sites except for wind direction
- 6. Daily mean observations over all hours and sites
- 7. Daily mean predictions over all hours and sites
- 8. Daily bias (signed error) over all hours and sites
- 9. Daily gross error (unsigned error) over all hours and sites
- 10. Daily systematic, unsystematic, and total RMSE over all hours and sites except for wind direction
- 11. Daily Index of Agreement (IOA) over all hours and sites except for wind direction

Analysis Regions

- 1. Pacific Ocean
- 2. Northwest California
- 3. San Francisco Bay Area
- 4. Central Coast
- 5. Sacramento Valley North
- 6. Sacramento Valley South/SJV North
- 7. San Joaquin Valley Central
- 8. San Joaquin Valley South
- 9. Eastern Mountains and Deserts

Moisture

Sonoma Technology, Inc.

- CALMET generally replicates the observed moisture with little or no bias but only provides relative humidity from the site nearest to each grid-cell
- During the first few simulation days, MM5 has a low bias.
 After 12/20, MM5 generally has a 0.5 g/kg high bias in water vapor mixing ratio
- MM5 trends are generally consistent with observations, but the diurnal cycle is damped (especially in central and southern SJV)) compared to the observations
- Nighttime mixing ratio errors are generally larger than daytime errors
- MM5 usually underpredicts nighttime maxima overpredicts daytime minima
- Errors are quite pronounced (bias approaching 2 g/kg) in the northern Sacramento Valley

Temperature

- CALMET generally replicates the observed temperatures with little or no bias
- MM5 temperatures are biased high through much of the simulation across the Central Valley, SFBA, and central coast
- MM5 often overpredicts both nighttime minimum and daytime maximum temperature
- Nighttime errors are generally larger than daytime errors.
- MM5 generally exhibits a damped diurnal cycle compared to observations

PBL Height

- Both CALMET and MM5 underestimate nighttime PBL heights
- CALMET is biased high during the day but often gets the peak heights correct. However, mid-morning PBL heights rise too rapidly
- MM5 is biased low but often does better than CALMET with the mid-morning rate of increase

Sonoma Technology, Inc.

Winds

- CALMET generally replicates the observed winds with little or no bias except in cells near multiple observing sites
- MM5 wind speeds are generally underpredicted (bias
 - ~0.4 m/s overall)

MM5 wind directions are generally unbiased

Ventilation Index

Wind Profiles

Angiola 12/25/2008

Transport Statistics (1 of 2)

- Statistics:
 - Daily Transport Distance
 - Daily Wind Direction
 - Daily Scalar Wind Run
 - Recirculation Factor
- Calculated at RWP sites by vertical bins
- RWP, CALMET, and MM5 compared

Transport Statistics (2 of 2)

Transport Statistics (3 of 3)

- CALMET
- MM5
- Can not be evaluated where there are no data

Soil Temperature (1 of 2)

Soil Temperature (2 of 2)

Sonoma Technology, Inc.

Extent of Fog - Satellite Imagery

Satellite 25-31 December 2000

Extent of Fog - Satellite vs. MM5

- CALMET does not predict or output fog or clouds.
- MM5 tends to overestimate the extent of fog/stratus.

Modeling Analyses

- Tracer Conservation (CALMET, MM5 -> CAMx)
- Tagged Tracer (CALMET, MM5 -> CAMx)
- MM5 Sensitivity
 - Time Step (6 vs. 12 minute)
 - Moisture Availability (25% and 75% reductions)
- Plume Rise (CALMET, MM5 -> CAMx vs. SF6 tracer)

Tracer Conservation

- Purpose: Assess modeling systems' behavior
- CAMx simulations
- Meteorological processing
 - MM5CAMx
 - CMETCAMX
- Initial conditions: 1 ppm of inert tracer
- Emissions and boundary conditions: Zero
- Analysis
 - Surface concentrations
 - Mass balance
 - Peak tracer concentrations by region

December 25: 7 Hours

December 27: 60 Hours

January 3: 12 Hours

January 5: 55 Hours

January 7: 96 Hours

Summary of Tracer Conservation

- CAMx loses mass faster with CALMET meteorology than with MM5
- CAMx-MM5 maintains a clearer separation of mass within the Central Valley
- CALMET is losing mass through vertical transport
- Evidence of observation-induced divergence is seen in CALMET, which may be useful for eliminating unrepresentative sites

Transport Analysis

- Tagged Tracers
- Improvement over original data analysis methods
- CAMx Simulations
- Initial and Boundaries Conditions: Zero
- Emissions
 - NO_x emissions mapped as unique inert tracer species to 6 urban areas and 1 "all other" area
- Analysis
 - Surface concentrations
 - Contributions to concentrations at specific sites

Tracer Source Areas

- Sacramento
- San Francisco Bay Area
- Stockton- Modesto
- Fresno
- Visalia
- Bakersfield
- Other

Angiola: December 25-30 2000

Bakersfield: January 3-8 2001

Sonoma Technology, Inc.

Modesto and Livermore

MM5

Fresno: MM5-CAMx December 18 – January 9

Summary of Tagged Tracers

- Local tracer emissions dominate the total tracer concentration although 5 to 30% of the total tracer concentrations at the urban sites are from "rural" areas
- The relative contribution of rural tracers at urban sites is less in CALMET simulations than in the MM5 simulations
- Transport between the SJV, SV, and SFBA air basin occurs on some days but does not dominate most of the analysis period (Inter-basin transport)
- The relative contribution of non-local tracers (i.e., tracers not emitted from the area selected for analysis) is larger in MM5 than in CALMET (Intra-basin transport)

MM5 Sensitivity Simulations

- Time Step (6 vs. 12 minutes)
- Soil Moisture
 - 25% Reduction
 - 75% Reduction
 - Results:
 - -Moisture Improved at 25%
 - -Temperature little change
 - –PBL Height little change
 - -Clouds/Fog little change

Plume Rise

- South Belridge Oil Field
- Clean Airship I
- SF6 Tracer
- CAMx modified to output plume rise
- CALMET and MM5

South Belridge Oil Field

Summary of CAMx Simulations

Simulation Number	Flights	Date	Start Time	End Time	Meteorology	Emission Rates
1	2-3	12/16/2001	1500	1700	MM5	1500-1700: 5.4 lb/hr
2	4-7	12/17/2000	0800	1200	MM5	0800-1000: 5.4 lb/hr 1000-1100: 1.0 lb/hr 1100-1200: 3.2 lb/hr
3	9-14	1/4/2001	0800	1300	MM5	0800-1300: 2.0 lb/hr
4	15-18	1/5/2001	0800	1700	MM5	0800-1000: 2.0 lb/hr 1000-1200: 0.0 lb/hr 1200-1300: 3.1 lb/hr 1300-1400: 0.0 lb/hr 1400-1700: 3.7 lb/hr
5	19-22	1/6/2001	0800	1600	MM5	0800-1000: 3.7 lb/hr 1000-1400: 0.0 lb/hr 1400-1600: 4.3 lb/hr
6	9-14	1/4/2001	0800	1300	CALMET	same as experiment 3
7	15-18	1/5/2001	0800	1700	CALMET	same as experiment 4
8	19-22	1/6/2001	0800	1600	CALMET	same as experiment 5

Observed and Modeled Plume Rise

Other Plume Analyses

- Vertical Diffusion
- Concentrations
- Horizontal and Vertical Transport and Diffusion

Plume Rise Summary

- Treatment of plume rise under stable nighttime conditions – not addressed in the experiments
- Plume heights calculated in CAMx were generally less than the observed
- Vertical transport and diffusion resulted in SF6 predicted at elevations above those observed
- Nighttime chemistry in the first 200 m agl
- Perform diagnostic simulations to investigate the impact of nighttime plume rise uncertainties on photochemical simulations of aerosol formation

Summary and Conclusions

Modeling Summary (1 of 3)

- CALMET replicates meteorological values at measurement sites but may not correctly represent spatial gradients
- MM5 has biases in temperature, moisture, wind speed, extend of fog, and PBL height that appear be related to land-surface-atmosphere interactions
- MM5 diurnal patterns of moisture, temperature, and PBL height do not match observed patterns
- CALMET-CAMx appears to lose mass too fast from the Central Valley

Modeling Summary (2 of 3)

- CALMET might be improved by more selective use of observational data but it is not clear if interpolationinduced divergence can be eliminated
- MM5-CAMx maintains mass in the Central Valley longer than CALMET-CAMx but predicts greater nonlocal contributions to inert-tracer concentrations (even though it underestimates wind speeds)
- Significant modifications to CALMET would be required to provide the spatially varying (vertical and horizontal) moisture fields required by photochemical aerosol models

Modeling Summary (3 of 3)

- Daytime plume rise in CAMx is underestimated using both CALMET and MM5 meteorology
- Adjustments to the MM5 moisture availability can reduce biases on moisture prediction but do little to improve the diurnal range and evolution of moisture, temperature, and PBL height

Conclusions

- Adequacy and validity of measurement methods
 - Traditional
 - RWP
 - SODAR
- Sufficiency of data precision, accuracy, bias, consistency, and time-resolution
- Spatial representativeness

Conclusions

- Ability of models to represent important phenomena
 - Stagnation
 - Moisture/Fog/Stratus
 - Vertical mixing including plume rise
 - Recirculation horizontal and vertical
 - Precursor transport Ambiguous Nitrate

Conclusions

- Model Evaluation Techniques
 - Conservation of tracers
 - Integrated and summary metrics
 - Extent of fog and clouds
 - Soil temperature and moisture
- Transport Pathways
 - Intra-basin
 - Inter-basin
 - CALMET vs. MM5

Recommendations (1 of 2)

- Use a land surface model in future MM5 simulations Issues
- Use FDDA in MM5 simulations
- Selectively reduce the number of sites used for objective analysis or data assimilation
- Consider using WRF in future simulations
- Meteorological and Photochemical modeling and evaluation should be an integrated process

Recommendations (2 of 2)

- Model Performance Evaluation
 - Better geo-referencing of satellite images and greater automation for extent of fog analysis
 - Improve methods addressing commensurability
 - Unify and standardize MPE tools
 - Use integrated methods: tracers and combination metrics
- CALMET vs. MM5
- More research on nighttime mixing processes
- Make meteorological model evaluation products available for PM_{2.5} model evaluations

